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ABSTRACT 

Background. Wildfires and consequent postfire hazards, specifically runoff-generated debris 
flows, are a major threat to California communities. Aim. To help prefire planning efforts across 
California, we identified areas that are most susceptible to postfire debris flows before fire 
occurs. Methods. We developed a calibration method for an established model that relates 
existing vegetation type to fire severity, a critical input to the US Geological Survey’s postfire 
debris-flow likelihood model. We calibrated the model for eight regions with data from 81 
wildfires that occurred in 2020 and 2021 in California. Key results. We predicted debris-flow 
likelihood, volume, and combined hazard classification, and created statewide maps that use 
simulated fire frequency and rainfall data to predict the probability that a basin will experience a 
wildfire and subsequent debris flow. Conclusions. We suggest that the model predictions are 
useful for identifying areas that pose the greatest risk of postfire debris-flow hazard for a 
simplified wildfire scenario. Implications. Although actual patterns of wildfire severity may vary 
from our simulated products, we show that applying a consistent methodology for all of 
California is useful for identifying areas that are likely to pose the greatest postfire hazards, 
which should help focus prefire mitigation efforts.  

Keywords: annual probability of postfire debris flow, California wildfires, existing vegetation 
type, geohazards, postfire debris flows, prefire hazard mitigation, risk assessment, runoff- 
generated debris flow, simulated burn severity, simulated fire, statewide prefire planning. 

Introduction 

Since the 1980s, California wildfires have increased in number, size, and severity, result
ing in significant impacts to the environment, economy, and society (Li and Banerjee 
2021). This is particularly evident in the past two decades where 18 of the 20 largest 
wildfires in California history have occurred since 2000, and where 15 of the 20 most 
costly and destructive fires to property in the state have occurred since 2015 (California 
Department of Forestry and Fire Protection 2024). Factors influencing the frequency, size, 
and destructiveness of wildfires include droughts and rising temperatures aggravated by 
climate change, as well as fire suppression, land management policies, and human 
encroachment into wildlands (Radeloff et al. 2018; Belongia et al. 2023). 

One of the more impactful postfire hazards in California are runoff-generated debris 
flows that frequently occur within 3 years following fire and can damage ecosystems, 
critical infrastructure, and pose a risk to life safety within and downgradient of the burned 
area (e.g. Kean et al. 2019; Thomas et al. 2023; Zekkos and Stark 2023; Rundio et al. 
2024; Swanson et al. 2024). Emergency managers, road and critical facility engineers, and 
flood control district officers are often challenged with little time to design and construct 
mitigation measures or develop and implement postfire response and evacuation plans 
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between the fire and the first triggering rainstorm (Kean et al. 
2019). Knowing the potential of postfire hazards under hypo
thetical burn scenarios can provide emergency managers, 
road and facility engineers, and flood control officers with 
information to better prepare for inevitable wildfires. 

More advanced knowledge of wildfire effects and associ
ated impacts across California is required to make informed 
decisions prior to fire and build additional resilience against 
postfire hazards under a changing climate (Kean and Staley 
2021). To contribute to this effort, we developed a statewide 
map that predicts the spatial distribution of fire severity and 
runoff-generated postfire debris-flow hazards. Benefits of this 
statewide modeling and mapping effort include (1) an assess
ment of threats to downstream values at risk (e.g. homes, 
bridges, and other infrastructure) that can be used to prioritize 
fuels treatments, (2) readily available data and maps that 
can immediately inform active suppression operations and 

emergency response efforts, (3) information that local gov
ernments can apply in residential development plans, zoning 
maps, and local hazard mitigation plans, (4) data to identify 
additional resource needs and support funding opportunities 
from federal and state sources (e.g. grant funds), and (5) 
information to assist in identifying and designing potential 
mitigation measures to reduce downstream hazards. 

Methods 

Prefire modeling regions 

Because fire behavior and severity vary across California 
(e.g. Parsons et al. 2010; Estes et al. 2017), we determined 
prefire modeling regions based upon patterns in fuels, 
topography, and climate. To account for differences in fuel 
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Southern Deserts (MBD)
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Central Coast Ranges (CCR)

Transverse & Peninsular
Ranges (TPR)

Fig. 1. Prefire modeling regions across California; 
outer region boundaries were adjusted to match 
the HU10 watershed boundaries and were split 
across the centerlines of large valleys.   
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type, we referred to the National Vegetation Classification 
Standard zones (US Forest Service 2009), which group exist
ing vegetation types that co-occur within landscapes with 
similar climate, substrates, and ecological processes. To 
account for differences in topography, and other physio
graphic controls, we referred to a map of geomorphic prov
inces that are characterized by distinct geology, topography, 
and plant communities (California Geological Survey 1997). 
Once the initial regions were identified, their margins were 
further refined using the watershed hydrologic unit (HU10) 
boundaries within the Watershed Boundary Dataset (US 
Geological Survey 2024) and valley centerlines (Fig. 1). 

Simulation of regional fire and burn severity for 
predicting postfire debris-flow hazards across 
California 

As numerous factors affect fire behavior (e.g. van Mantgem 
et al. 2013; Zald and Dunn 2018), many of which cannot be 
estimated prior to fire, we simulated fire severity across 
each prefire modeling region using established relationships 
between observed existing vegetation type and the change 
in surface and subsurface organic matter composition (i.e. 
differenced Normalized Burn Ratio: dNBR; Staley et al. 2018;  
Kean and Staley 2021). Staley et al. (2018) developed a two- 
parameter Weibull cumulative distribution function (CDF) 
for 282 unique LandFire Existing Vegetation Type (EVT) 
classes present within 3163 historical burn areas across the 
western US using data available between 2001 and 2014 
(LandFire 2022). To incorporate change in landcover across 
the state associated with disturbances since 2014, including 
wildfire, we created a map of the most recent EVT classes 
with established CDF parameters (Staley 2018). Where there 
were no data values or EVT classes present without corre
sponding CDF parameters, we back sampled from previous 
EVT datasets to assign EVT classes that closely matched 
observed conditions. This enabled us to create a continuous, 
statewide map of EVT data for which corresponding CDF 
parameters exist. 

To simulate dNBR, we used the CDF parameters for each 
EVT class and the same parameters for each prefire region. 
The cumulative probability of the Weibull CDF at which fire 
severity is being simulated is represented by Pdsim. For exam
ple, entering the CDF at a Pdsim of 0.5 (50th percentile) 
describes the median fire severity for each EVT class; entering 
at a Pdsim of 0.9 (90th percentile) describes an abnormally 
high fire severity for that EVT class. We chose to calibrate the 
Pdsim parameter for each prefire region and two calibration 
approaches are described in the following section. These 
approaches do not capture variability due to local conditions 
(e.g. wind direction) but aim to represent potential regional 
outcomes based on historical burn severity observations. 
Simulated dNBR for each EVT class was estimated from Eqn 1 
in Table 1. Lastly, the simulated dNBR map was classified into 
Burned Area Reflectance Classification (BARC) categories of 

unburned/very low, low, moderate, and high burn severity, as 
described in the next section. 

To predict the debris-flow hazard within the first year 
following fire, the simulated dNBR and BARC maps, along 
with a fixed 15-min rainfall intensity (I15) of 24 mm h−1, were 
used as input variables in the US Geological Survey’s (USGS) 
postfire debris-flow hazard assessment model equations for 
predicting debris-flow likelihood, volumes of sediment depos
ited by debris flows (herein referred to as ‘volume’), and rain
fall intensity-duration thresholds (Table 1). We used an I15 of 
24 mm h−1, as I15 is a better predictor of runoff-generated 
postfire debris-flow occurrence than rainfall intensities mea
sured over longer durations (e.g. Kean et al. 2011; Staley 
et al. 2013; Thomas et al. 2023) and is also the rainfall 
intensity metric used in the volume model (Gartner et al. 
2014). Furthermore, 24 mm h−1 is close to the mean and 
median I15 associated with a 1-year recurrence interval within 
our modeled area. Staley et al. (2020) show that postfire 
debris flows are most commonly triggered by the 1-year 
recurrence interval I15. For this reason, the 24 mm h−1 rain
fall intensity is frequently applied in USGS postfire debris-flow 
hazard assessments (e.g. Staley et al. 2017; Barnhart et al. 
2021). We used a debris-flow likelihood value of 50% to solve 
for rainfall intensity-duration thresholds (Table 1). 

Calibration methods 

We considered two calibration methods, one focused on 
reproducing BARC maps (herein referred to as the ‘BARC 
map calibration’) whereas the other focused on reproducing 
the best match to the debris-flow likelihood results pro
duced by the USGS debris-flow likelihood model using 
observed dNBR values (herein referred to as the ‘DFL cali
bration’). We refer to the USGS debris-flow likelihood model 
results as ‘observed’ because the values are calculated from 
observed dNBR and observed BARC values from postfire 
satellite data. Each method used a fire calibration set com
posed of California wildfires in the Monitoring Trends in 
Burn Severity (MTBS) database for 2020 and 2021 that 
contain low-moderate BARC breaks and fire area above 
10 km2 (MTBS 2022; Fig. 2). We focused on low-moderate 
BARC breaks instead of moderate-high BARC breaks because 
the USGS debris-flow likelihood and volume models do not 
distinguish between moderate and high BARC values. We 
limited our calibration of Pdsim to these fires for several 
reasons, including (1) the distribution of fires included in 
the calibration set are spatially distributed across a wide 
range of physiographic regions; (2) the difference in mean 
MTBS burn severity in the calibration set is not statistically 
significant (P = 0.26) compared to the full set of fires in the 
MTBS dataset from 1984 to 2021; and (3) the unavailability 
of post-2021 MTBS data at the time of analysis. We calcu
lated the median of the low-moderate BARC break values for 
the calibration fires for each prefire modeling region (Fig. 2) 
to generate regional BARC break values that were used to 
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calculate the area burned at moderate and high severity. A 
calibrated Pdsim value was determined for each fire. The 
regional Pdsim value was calculated as the median of the 
Pdsim values for fires in the same region. 

For the BARC map calibration, Pdsim was chosen to pro
duce a combined moderate and high BARC area, produced 
from modeled dNBR values and regional BARC breaks, that 
is equal to or greater than the observed combined moderate 
and high BARC area. For the DFL calibration, Pdsim was 
calibrated to produce the lowest Root Mean Square Error 
(RMSE) for the simulated debris-flow likelihood and the 
observed debris-flow likelihood results. We use the observed 
MTBS dNBR values, fire-specific MTBS BARC breaks, and 
15-min rainfall intensity of 24 mm h−1 for basins inside the 
fire perimeter as input to the USGS debris-flow likelihood 
model to calculate observed debris-flow likelihood results. 
These results were generated using the postfire debris-flow 
(‘pfdf’) Python library (King 2023). The DFL calibration 
procedure is summarized in a flowchart in Fig. 3. For the 
DFL calibration, basins with less than 75% of their area 
inside the fire perimeter or a median observed dNBR value 

below the fire-specific MTBS unburned-low BARC break 
were excluded from the calibration. 

Calibration assessment 

To assess which calibration approach produced better results, 
we compared the Nash-Sutcliffe Efficiency (NSE) for the two 
calibration approaches. NSE was calculated as: 

DFL
1

(DFL DFL )

(DFL )
i
n i i

i
n i
=1 obs sim

2

=1 obs obs
2 (5)  

where DFLobs is the fire-wide mean observed debris-flow 
likelihood calculated from the USGS debris-flow likelihood 
model (Staley et al. 2016), DFLsim is the fire-wide mean 
simulated debris-flow likelihood for the respective calibration 
approach, i represents each calibration fire, and n is the total 
number of calibration fires. Regional BARC breaks and 
regional Pdsim values were used for the simulated debris- 
flow likelihood model runs whereas observed MTBS BARC 
breaks were used for the observed debris-flow likelihood 

Table 1. Summary of prefire simulated dNBR equation and USGS postfire debris-flow hazard models.     

Name Equation Citation   

Simulated differenced Normalized 
Burn Ratio (dNBR) for each Existing 
Vegetation Type (EVT) class 
(SimdNBR) 

PSimdNBR = [ ln (1 ) ] × 2000 1000dsim
1/ (1)    Staley 

et al. (2018) 

λ = best-fit scale parameter for each Weibull cumulative distribution function (CDF) 

κ = best-fit shape parameter for each Weibull CDF 

Pdsim = percentile of the Weibull CDF at which fire severity is being simulated 

Debris-flow likelihood (DFL) X XDFL = exp( )/(1 + exp( )) (2)    Staley 
et al. (2016) 

X X R X R X R= 3.63 + (0.41 × × ) + (0.67 × × ) + (0.7 × × )1 2 3

X1 = proportion of upslope basin area burned at high or moderate severity with 
gradient in excess of 23 degrees 

X2 = average dNBR of upslope basin area divided by 1000 

X3 = soil erodibility index of the fine fraction of soils (i.e. Kf factor) 

R = 15-min rainfall accumulation (mm) 

Debris-flow volume (DFV, m3) IDFV = exp(4.22 + 0.39 × sqrt( ) + 0.36 × ln(Bmh) + 0.13 × sqrt(Relief))15 (3)    Gartner 
et al. (2014) 

I15 = 15-min rainfall intensity (mm h–1) 

Bmh = upslope basin area burned at high or moderate severity (km2) 

Relief = upslope basin relief (m) 

Rainfall intensity-duration threshold 
(T, mm h–1) 

T X X X= (ln(DFL/1 DFL) + 3.63)/((0.41 × ) + (0.67 × ) + (0.7 × ) )1 2 3 (4)    Staley 
et al. (2017) 

DFL = likelihood value used for debris-flow threshold (i.e. DFL = 0.5) 

X1 = proportion of upslope basin area burned at high or moderate severity with 
gradient in excess of 23 degrees 

X2 = average dNBR of upslope area divided by 1000 

X3 = soil erodibility index of the fine fraction of soils (i.e. Kf factor)   
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Fig. 2. Pdsim calibration methods. Calibration fires (n = 81) from 2020 to 2021, with table showing number of 
fires by region (a); median low-moderate Burned Area Reflectance Classification (BARC) break values (b); 
regional Pdsim values (c); Root Mean Square Error (RMSE) calculated to compare the simulated and observed 
debris-flow likelihood for basins inside the fire perimeters (d). Abbreviations: CCR, Central Coast Ranges; KM, 
Klamath Mountains; MBD, Modoc Plateau, Basin and Range, and Southern Deserts; NCR, Northern Coast 
Ranges; NSN, Northern Sierra Nevada; SC, Southern Cascades; SSN, Southern Sierra Nevada; TPR, Transverse 
and Peninsular Ranges.   
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model runs. We focused our discussion on the calibration 
approach that produced the highest NSE. 

Postfire debris-flow model and prefire inputs 

The simulated dNBR map was generated from the EVT map 
(Table 2) using the established EVT-dNBR relationships 
(Staley et al. 2018) and the regional Pdsim values. The simu
lated dNBR map was then classified into a simulated BARC 
map using the regional median low-moderate BARC break 
values. 

To only model debris-flow likelihood and volume where 
runoff-generated postfire debris flows could initiate, we 
adopted the standard USGS basin area criteria (0.025–8 km2;  
Staley et al. 2016) and masked the model domain to prevent 
basin delineation in flat areas (Table 2). Though flat areas 
could experience inundation from debris flows generated 
upstream, the USGS models used in this study are only 

intended to model initiation, not runout. We then ran the 
debris-flow likelihood and volume models within the pfdf 
Python library (King 2023) separately for each subbasin 
hydrologic unit (HU8) boundary in California in the 
Watershed Boundary Dataset to increase computational effi
ciency relative to modeling the full state in one iteration. We 
used subbasins (HU8) for most regions and watersheds 
(HU10) in the Basin and Range and Southern Deserts region, 
which we found to minimize basin delineation artifacts. 

Annual probability of postfire debris flows across 
California 

The annual probability of occurrence of a particular rainfall 
intensity varies widely across the diverse climates of Cali- 
fornia. Therefore, climatological information was required to 
predict the annual exceedance probability P(R > T) of a 
rainfall intensity (R) exceeding the modeled rainfall intensity 

Choose
calibration fires

MTBS fire
perimeter dataset

MTBS BARC
breaks

Export fire
perimeter for

each fire

Create basin
perimeters using

pfdf python library
for each fire

Exclude basins
that have <75%
area within fire

perimeter

For each fire, run USGS DFL model (I15 = 24 mm h–1) for each
basin and solve for Pdsim using existing Staley et al. (2018)
EVT/dNBR relation. Use 2020–2021 regional low/moderate

BARC breaks.

For each basin, identify Pdsim
value that produces best

match between simulated and
observed DFL.

For each fire, calculate median
Pdsim from best-fit basin Pdsim

values. Exclude unburned basins
(median dNBR < unburned/low

BARC break)

Region
boundaries

Observed DFL from
USGS model, using
postfire MTBS data
from calibration fires

Calculate regional
Pdsim as median Pdsim
of all fires in the region

Calculate regional
low/moderate BARC

break as median BARC
break of all fires in the

region

Export DEM
for each fire

Export Kf
factor raster
for each fire

Export MTBS
dNBR raster
for each fire

Export 2020
EVT map for

each fire

Fig. 3. Flowchart summarizing the regional Pdsim calibration and low-moderate Burned Area Reflectance 
Classification (BARC) break calculation procedure detailed in the Methods section. Inputs, outputs and 
intermediate steps are shown in blue, green, and white boxes, respectively. Abbreviations: DFL, debris- 
flow likelihood; dNBR, differenced Normalized Burn Ratio; DEM, Digital Elevation Model; EVT, Existing 
Vegetation Type; MTBS, Monitoring Trends in Burn Severity.   
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threshold (T). The National Oceanic and Atmospheric 
Administration (NOAA) Atlas14 product (Perica et al. 2014) 
describes the 15-min rainfall intensity associated with particu
lar recurrence intervals (RI) from 1 to 1000 years. These 
products are spatially continuous across the state with a cell 
size of 800 m. The relationship between a particular rainfall 
intensity and its expected RI is log-linear and can be expressed 
as Eqn 6 in Table 3. To estimate m and b, the mean values of 
the 1- and 50-year rainfall intensity (Fig. 4) at each basin were 
extracted using a zonal statistics algorithm, and m and b were 
estimated using Eqns 7 and 8 in Table 3. The RI of the modeled 
rainfall intensity threshold was then computed for each basin. 
To convert RI to annual exceedance probability P, we used  
Eqn 9 in Table 3. 

With this workflow, we estimated the RI and associated 
annual exceedance probability of the modeled rainfall inten
sity threshold at each basin, after it has burned. However, as 
the aim of this study is to model debris-flow likelihood 

before a fire occurs, a true prefire estimate of postfire 
debris-flow likelihood should also take into account the 
probability that a fire actually occurs (i.e. P(F)) in a partic
ular basin (e.g. Kean and Staley 2021). For typical climatic 
conditions (i.e. neither drought nor extremely wet condi
tions), we expect a weak relationship between the occur
rence of threshold-exceeding rainfall intensity and fire, and 
we treat their occurrence as independent of one another. For 
typical conditions, which we aim to model in this study, we 
estimate the annual probability of a postfire debris flow is 
thus the product P(F) × P(R > T). 

To estimate P(F) we used the wildfire simulation model 
(FSim) product developed by Pyrologix in conjunction with 
the US Forest Service and California Department of Forestry 
and Fire Protection, which estimates annual fire probability 
(regardless of severity) in a spatially continuous 30-m grid 
across the state (Vogler et al. 2021; US Forest Service 2023;  
Fig. 4). The FSim product captures variability in localized 

Table 2. Datasets used in the statewide prefire modeling of postfire debris-flow hazards.     

Dataset name Description Source   

Cumulative distribution function 
(CDF) parameters 

Best-fit Weibull CDF parameters that relate each Existing Vegetation Type 
(EVT) class to a differenced Normalized Burn Ratio (dNBR) value; used to 
calculate simulated dNBR.  

Staley (2018) 

EVT A, B EVT rasters (30-m) used to generate simulated dNBR inputs.  LandFire (2022) 

Calibrated Pdsim and Burned Area 
Reflectance Classification (BARC) 
break values by region 

Calibrated Pdsim values and the median low-moderate BARC breaks 
(calibration fire dataset) for each of the eight prefire modeling regions.  

MTBS (2022) 

Digital Elevation Model (DEM) A Mosaic of 1/3 arc-second digital elevation tiles.  US Geological Survey (2024) 

Kf factor A Soil erodibility index of the fine fraction of soils; STATSGO soil polygons 
assigned with ‘KFFACT’ attribute; values less than 0 were excluded from the 
analysis.  

Schwartz and 
Alexander (1995) 

Model domains A Subbasin (HU8) and watershed (HU10) boundary polygons from the Watershed 
Boundary Dataset that were used to define the model domain.  

US Geological Survey (2023) 

Masks A A set of masks were used to exclude areas of low slope or open water from 
the model domain where debris flows are unlikely to initiate and to minimize 
artifacts in basin delineation.  

LandFire (2022),  US 
Geological Survey 
(2020,  2023) 

Valley mask: A focal statistics algorithm was used to calculate the standard 
deviation of elevation within a 200 m radius of every cell in the DEM. Clusters 
of cells with values less than or equal to 5 m were converted to polygons, and 
all polygons with an area less than 1 km2 were deleted. 

Sink mask: To create the sink mask, the portion of the pfdf Python library 
( King 2023) which generates a flow direction raster was run and DEM 
conditioning criteria of filled pits, filled depressions, and unresolved flats was 
selected. The areas marked as null in this output directly correspond to areas 
mapped erroneously as basins. We converted these clusters of null values to 
polygons and deleted all polygons with an area less than 1 km2. To ensure that 
all polygons of the sink mask were in valley areas, we deleted all polygons that 
did not intersect the valley mask. 

Water mask: Two data sources were used to mask out large bodies of water, 
including water bodies boundaries and the 2022 EVT open water classification. 

AProjected to California Teale Albers (datum: NAD 1983); 10-m resolution. 
BWe used the LandFire EVT rasters to generate two EVT maps that contain the most recent EVT classes with established CDF parameters to use in the calibration 
of Pdsim (2020 EVT map) and the prefire modeling (2022 EVT map). Pixels that contained a no data value in the EVT maps were assigned an EVT code of 7294 (i.e. 
barren).  
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fire conditions and behavior, including changes in fuel mois
ture content, combinations of wind speed, wind direction, 
topography, and historical fire occurrence across the land
scape (Vogler et al. 2021; U.S. Forest Service 2023). We then 
computed the mean P(F) value for each basin and multiplied 
it by the basin’s P(R > T) prediction to yield an annual 
probability of fire followed by above-threshold rainfall in 
the year following fire. The prefire modeling and annual 
probability procedure is summarized in Fig. 5. 

Results 

Existing vegetation type map 

The Existing Vegetation Type (EVT) classes that we replaced 
within the EVT maps varied in total area by region. 
Approximately 20% of the prefire modeling region domain 
was mapped with EVT classes drawn from preceding EVT 
rasters used in both the calibration of Pdsim (2020 EVT map) 
and the simulated differenced Normalized Burn Ratio (dNBR) 

Table 3. Summary of equations used to calculate annual probability.     

Name Equation Citation   

Recurrence interval (RI) RI = 10mI b+15 (6)    Perica et al. (2014) 

I15 = 15-min rainfall intensity (mm h–1) 

m = slope of the log-linear relationship between 
intensity and RI ( Eqn 7) 

b = y-intercept of the log-linear relationship 
between intensity and RI ( Eqn 8) 

m, b 
m

I I
=

log(50) log(1)
50yr 1yr15 15

(7)    
Perica et al. (2014); m and b calculated using zonal 
statistics algorithm in QGIS (version 3.34.1) 

b m I= × 1yr 15 (8)   

1yrI15 = 1-year rainfall intensity (mm h–1) 

50yrI15 = 50-year rainfall intensity (mm h–1) 

Annual exceedance 
probability (P) 

P = 1 e 1/RI (9)    Feller (1991) 

RI = recurrence interval ( Eqn 6)   

200 km

1-year I15 (mm h–1)

0 75

50-year I15 (mm h–1)

0 150

N

200 km

N P(F)

0 0.1

200 km

N

(a) (b) (c)

Fig. 4. Maps of inputs to the annual probability analysis: Atlas14 1-year (a) and 50-year (b) 15-min rainfall intensity (I15), and the FSim annual 
burn probability product (P(F)) (c;  Vogler et al. 2021;  US Forest Service 2023).   
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maps used in the prefire modeling (2022 EVT map; Fig. 6). 
The total replaced area of EVT classes ranged from ~5% in 
the Klamath Mountains to ~35% in the Central Coast Ranges 
and Southern Sierra Nevada and mostly consisted of low- 
elevation slopes along the margin of the Sacramento and 
San Joaquin Valleys. 

Comparison of calibration methods 

We compared results for two Pdsim calibration methods to results 
for Pdsim of 0.50 (Fig. 7) for 81 calibration fires (Table 4). The 

DFL calibration produced a higher Nash-Sutcliffe Efficiency 
value (NSE = 0.57) relative to the Burned Area Reflectance 
Classification (BARC) map calibration (NSE = 0.37) with 
regionally calibrated Pdsim values or using a fixed Pdsim of 0.50 
(NSE = 0.22; Fig. 7). Because the DFL calibration produced the 
highest NSE value of the two calibration methods that we 
considered, we focused our results and discussion on the results 
from the DFL calibration. We also considered the consequences 
of predicting debris-flow likelihood using a fire-specific Pdsim 
instead of the regional median Pdsim. The fire-specific Pdsim 

DEM

Simulated dNBR

Simulated BARC

Debris-flow
volume

Debris-flow
likelihood

Combined hazard

Combined hazard matrix

USGS hazard assessment models

Regionally
calibrated dNBR/

EVT relation

Regional BARC
breaks

Recurrence
interval
analysis

Annual
probability
analysis

Rainfall-intensity
threshold (T)

P (R > T )

P(F) ´ P(R > T)

Existing veg. type Soil erodibility Masked areas Rainfall climatology Fire probability

Fig. 5. Flowchart outlining the prefire hazard modeling procedure and associated map products. We used a 15- 
min rainfall intensity of 24 mm h−1 as an input to the debris-flow likelihood and volume models. This procedure is 
detailed in the Methods section. Abbreviations: BARC, Burned Area Reflectance Classification; dNBR, differenced 
Normalized Burn Ratio; EVT, Existing Vegetation Type; RMSE, Root Mean Square Error; R, rainfall intensity; T, 
modeled rainfall intensity threshold; P(R > T), annual probability that the 15-min triggering rainfall intensity is 
exceeded for a debris-flow likelihood value of 50%; P(F), annual fire probability; P(F) × P(R > T), annual probability of 
a fire and subsequent above-threshold rainfall intensity within the year following fire.   
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produced a better relationship between the simulated and 
observed debris-flow likelihood (NSE = 0.98; Fig. 7). 

The Root Mean Square Error (RMSE) values of the calibra
tion were generally low but varied by region (Fig. 7, Table 5). 
For example, calibration fires for the Central Coast Ranges 
produced the highest RMSE (0.18) while the region that 
includes the Modoc Plateau, Basin and Range, and Southern 
Deserts produced the lowest RMSE (0.03) (Fig. 7, Table 5).  
Figs 2 and 8 present Pdsim results for each region. Basins 
where the simulated dNBR closely matched the observed 
dNBR typically produced the closest match between simulated 
and observed debris-flow likelihood (Fig. 9). Observed basin 
dNBR exhibits a much wider range in values relative to 
simulated Pdsim values (Fig. 9). The limited range of simulated 
dNBR values constrained the ability of the model to reproduce 
observed dNBR distributions. Regions with lower moderate 
BARC breaks typically produced lower calibrated Pdsim val
ues (Fig. 8). 

The wide range in calibrated Pdsim values (Figs 2, 8) is 
strong evidence that fire behavior and severity vary widely 
even for a single region. For some regions, we reproduced 
the mean debris-flow likelihood using a regional calibration. 
In particular, the Modoc Plateau, Basin and Range, Southern 
Deserts and the Southern Cascades produced relatively low 
RMSE values (0.03 and 0.04, respectively) while the Klamath 

Mountains (RMSE = 0.13) and Central Coast Ranges 
(RMSE = 0.18) produced the highest RMSE. The Northern 
Coast Ranges (RMSE = 0.07), Northern Sierra Nevada 
(RMSE = 0.07), Southern Sierra Nevada (RMSE = 0.08) 
and Transverse and Peninsular Ranges (RMSE = 0.08) pro
duced results with intermediate RMSE. In most cases, the 
ability to predict the mean debris-flow likelihood is much 
better than the ability to predict the debris-flow likelihood 
of basins within an individual fire perimeter (Table 5). For 
example, the RMSE for the fire-wide mean debris-flow likeli
hood is substantially lower than the RMSE calculated from all 
calibration basins in the region (RMSE = 0.02 for the fire 
mean versus RMSE = 0.21 for calibration basins for the fire- 
specific Pdsim and RMSE = 0.09 for the fire mean versus 
RMSE = 0.22 for calibration basins for the regional Pdsim;  
Table 5). 

Statewide prefire map products 

Using the methods described above, we generated nine map 
products relevant to predicting postfire debris-flow hazard 
prior to fire (Rossi et al. 2025). The simulated dNBR and 
simulated BARC (four classes; Fig. 10) maps were generated 
prior to running the USGS models and resulted from the simu
lated burning of existing vegetation according to the regional 

200 km

Existing Vegetation Type (EVT) Class

N 200 km N

Undefined Staley (2018) CDF

Valley mask

(a) (b)

Fig. 6. 2022 EVT map ( Table 2) showing the spatial distribution of Landfire EVT classes across the prefire modeling regions, with each 
Landfire EVT class shown in a different color (a) and location of replaced EVT classes across the California prefire modeling region 
domain, where a  Staley (2018) CDF is undefined (b).   
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Pdsim and regional BARC breaks that provided the best match of 
simulated to observed debris-flow likelihood results. The spatial 
data generated by the USGS models include debris-flow likeli
hood (calculated using I15 = 24 mm h−1), rainfall intensity 
threshold (calculated using debris-flow likelihood = 50%), 
volume, and combined hazard classification (Fig. 10). 
Combined hazard classification was determined by combining 

the USGS modeled debris-flow likelihood and volume and 
assigning a combined hazard class as low, moderate, or high 
(Cannon et al. 2010). The products associated with the annual 
probability methods include annual probability of exceedance 
of the predicted rainfall intensity threshold, annual fire proba
bility, and annual probability of fire and subsequent above- 
threshold rainfall in the year following fire (Fig. 10). 
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Modoc Plateau, Basin and Range, Southern Deserts (RMSE = 0.03)
Transverse and Peninsular Ranges (RMSE = 0.08)
Southern Sierra Nevada (RMSE = 0.08)
Northern Sierra Nevada (RMSE = 0.07)
Klamath Mountains (RMSE = 0.13)
Northern Coast Ranges (RMSE = 0.07)
Central Coast Ranges (RMSE = 0.18)
Southern Cascades (RMSE = 0.04)
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Fig. 7. Comparison of fire-wide mean debris-flow likelihood for fixed Pdsim = 0.50 (a) and calibration to best match 
to percent moderate-high burn severity (i.e. Burned Area Reflectance Classification (BARC) map calibration) (b), and 
lowest Root Mean Square Error (RMSE) for observed and simulated debris-flow likelihood (i.e. DFL calibration) (c). 
Uncertainty bars show two standard errors of the mean for the basins inside the respective fire perimeter. The 
uncertainty bars indicate the relative width of the distributions for the simulated and observed debris-flow 
likelihood for a single fire (since the sample size for simulated and observed debris-flow likelihood match for the 
same fire). Results and statistics are for simulated and observed debris-flow likelihood for basin dNBRobs > unburned- 
low BARC break (Tlow). Abbreviations: dNBR, differenced Normalized Burn Ratio; NSE, Nash-Sutcliffe Efficiency.   
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Discussion 

Limitations of simulating dNBR 

One limitation of our approach is that we used relationships 
between Existing Vegetation Type (EVT) and differenced 
Normalized Burn Ratio (dNBR) developed by Staley et al. 
(2018) and new EVT classes have been introduced in 
California since the Staley et al. (2018) study. Instead of 
developing new EVT-dNBR relationships for the new EVT 
classes, we reclassified the new EVT classes with previous 
EVT classes. Updated cumulative distribution function (CDF) 
parameters could be calculated for areas where we applied 
replacement EVT classes, but it remains unclear how much 
these new EVT classes might impact simulated fire severity. 
For example, California Ruderal Grassland, a new grassland 
EVT class that widely occurs within the Central Coast Ranges 
and Southern Sierra Nevada, was replaced in our EVT map 
with a more spatially variable set of preceding EVT classes 
that included grassland, shrubland, and forest EVT classes. 
Updated CDF parameters for this new grassland EVT are 
likely to represent similar fire severity to our replacement 
grassland EVT class. In this example, our replacement EVT 
classes of shrubland and forest likely simulate higher fire 
severity than the new grassland EVT class and thus we 
provide a more conservative representation of fire severity 
in these locations. 

Pdsim calibration 

Expanding the calibration dataset to include additional fires 
may influence the regionally calibrated Pdsim values, but our 
ability to reproduce variance in basin debris-flow likelihood 
is unlikely to improve by expanding the calibration dataset. 

This is because our current approach for predicting dNBR 
produced a relatively limited range in dNBR values relative 
to real fire behavior (Fig. 9) and because predicting variabil
ity in fire behavior is difficult even with more sophisticated 
approaches that predict burn severity (Wells et al. 2023). 

The model requires calibration of a single parameter (Pdsim), 
and we calibrated the model to produce a close match 
between the mean simulated and observed debris-flow likeli
hood. Increasing Pdsim will shift the mean debris-flow likeli
hood higher while decreasing Pdsim will shift the mean debris- 
flow likelihood lower. Even within a single region, there was a 
wide range in fire intensity, which required different values of 
Pdsim to match mean fire-wide debris-flow likelihood (Fig. 8). 
Because fire-specific Pdsim values varied for a region (Fig. 8), 
we used the median Pdsim for a region to estimate debris-flow 
likelihood and produce our debris-flow likelihood maps. The 
relatively minimal improvement in Root Mean Square Error 
(RMSE) for basins using a fire-specific Pdsim relative to a 
regional Pdsim (RMSE = 0.21 for fire-specific Pdsim versus 
RMSE = 0.22 for regional Pdsim) is evidence that there is 
limited opportunity to better reproduce the variance in 
debris-flow likelihood inside a fire perimeter because the 
fire-specific Pdsim is already tuned to a value that minimizes 
basin debris-flow likelihood RMSE. In other words, the 
fire-specific Pdsim calibration already produced the best 
match between simulated and observed basin debris-flow 
likelihood. 

In regions with lower RMSE, we have higher confidence 
in our ability to predict mean debris-flow likelihood. In 
particular, the Modoc Plateau, Basin and Range, and 
Southern Deserts and the Southern Cascades produced rela
tively low RMSE values (0.03 and 0.04, respectively) rela
tive to the Klamath Mountains and Central Coast Ranges, 

Table 4. List of calibration fires by region.    

Region Calibration fires A   

Central Coast Ranges Carmel (30 km2), Crews (23 km2), CZU August Lightning (348 km2), Dolan (503 km2), Mineral (121 km2), River (209 km2), SCU 
Lightning Complex (1642 km2), Willow (13 km2) 

Klamath Mountains Cronan (31 km2), Devil (37 km2), Fawn (37 km2), Haypress (828 km2), Knob (10 km2), McCash (388 km2), McFarland (492 km2), 
Monument (915 km2), Red Salmon Complex (597 km2), Salt (51 km2), Slater (639 km2), Zogg (230 km2) 

Modoc Plateau/Basin and 
Range/Southern Deserts 

Baccarat (41 km2), Coles Flat (167 km2), Dexter (12 km2), Gold (88 km2), Junction Ranch (38 km2), Mountain View (58 km2), 
North (28 km2), Sheep (118 km2), Slink (107 km2), Tamarack (284 km2), W-5 Cold Springs (340 km2) 

Northern Coast Ranges August Complex (4325 km2), Glass (275 km2), Hennessey (1272 km2), McFarland (492 km2), Meyers (10 km2), Wallbridge 
(223 km2), Woodward (20 km2) 

Northern Sierra Nevada Caldor (917 km2), Dixie (3965 km2), Hog (39 km2), Loyalton (184 km2), North (28 km2), North Complex (1281 km2), River 
(11 km2), Sheep (118 km2), Sugar (439 km2) 

Southern Cascades Antelope (574 km2), Caldwell (331 km2), Dixie (3965 km2), Lava (106 km2), Tennant (48 km2) 

Southern Sierra Nevada Bluejay (28 km2), Castle (706 km2), Creek (1544 km2), Dexter (12 km2), French (111 km2), KNP Complex (364 km2), Moc (13 km2), 
Rattlesnake (37 km2), River (41 km2), Slink (107 km2), Stagecoach (31 km2), Tamarack (284 km2), Tiltill (11 km2), Walkers (36 km2), 
Windy (396 km2) 

Transverse and Peninsular 
Ranges 

Alisal (72 km2), Apple (131 km2), Blue Ridge (56 km2), Bobcat (468 km2), Bond (27 km2), Creek 5 (18 km2), El Dorado (90 km2), 
India (98 km2), Lake (125 km2), Ranch 2 (18 km2), Silverado (51 km2), Snow (26 km2), Southern (22 km2), Valley (67 km2) 

AFire area included in parentheses; fires that were used in more than one region are listed in bold text.  
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Table 5. Summary of regional values.                 

Region Calibration Basins inside fire perimeter A, C Fire-wide mean B, C 

Fire 
area (km2) 

Total 
basins 

Total fires 2020/2021 
regional 

median of 
low- 

moderate 
BARC 
break 

Regional 
Pdsim 

Slope (°) Observed 
dNBR 

Simulated 
dNBR for 
regional 
Pdsim 

Observed 
DFL 

Simulated 
DFL for 
regional 
Pdsim 

DFL RMSE 
for fire- 
specific 
Pdsim 

DFL RMSE 
for 

regional 
Pdsim 

DFL RMSE 
for fire- 
specific 
Pdsim 

DFL 
RMSE for 
regional 
Pdsim   

Central Coast 
Ranges 

2888 4445 8 350  0.56  23.9 352 342  0.41  0.33  0.24  0.26  0.05  0.18 

Klamath 
Mountains 

4254 7059 12 321  0.40  26.2 391 326  0.44  0.41  0.29  0.33  0.02  0.13 

Modoc Plateau/ 
Basin and Range/ 
Southern Deserts 

1280 1891 11 272  0.38  14.7 229 231  0.19  0.20  0.11  0.11  0.00  0.03 

Northern Coast 
Ranges 

6618 9618 7 316  0.47  22.1 375 347  0.41  0.41  0.24  0.24  0.01  0.07 

Northern Sierra 
Nevada 

6982 12,782 9 312  0.49  18.5 422 356  0.41  0.39  0.22  0.22  0.00  0.07 

Southern 
Cascades 

5025 7802 5 315  0.52  15.0 378 366  0.34  0.35  0.20  0.20  0.00  0.04 

Southern Sierra 
Nevada 

3721 6243 15 310  0.40  20.4 315 308  0.27  0.25  0.19  0.20  0.01  0.08 

Transverse and 
Peninsular 
Ranges 

1269 1939 14 332  0.55  24.5 313 335  0.33  0.31  0.19  0.19  0.03  0.08 

Regional mean 4005 6472 10 316  0.47  20.7 347 326  0.35  0.33  0.21  0.22  0.02  0.09 

Abbreviations: BARC, Burned Area Reflectance Classification; DFL, debris-flow likelihood; dNBR, differenced Normalized Burn Ratio; RMSE, Root Mean Square Error. 
AFor each region, basins inside fire perimeter values were calculated as the mean value for all calibration fire basin values in the region (for example, the mean RMSE of 4445 basins in the Central Coast 
Ranges). 

BFire-wide mean values were calculated from the mean value for each calibration fire in the region (for example, the mean RMSE of 8 fire values for the Central Coast Ranges). 
CIn both cases, basins with observed dNBR less than or equal to the unburned-low BARC break (Tlow) were excluded from the calculations.  
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which produced relatively high RMSE values (0.13 and 0.18, 
respectively; Fig. 7). 

Recommendations on applying the debris-flow 
likelihood results 

The maps and associated data can be used to identify poten
tial postfire hazards for individual basins as a function of 
debris-flow likelihood, volume, combined hazard classifica
tion, or annual probability of postfire debris flow. These 
maps can be used to prioritize treatments such as fuel 

reduction projects to decrease the spatial extent and severity 
of wildfire; prioritize road maintenance and crossing 
upgrades to minimize road failures and improve access for 
public travel, commerce, and emergency services; inform 
operational plans during active fire suppression activities, 
especially in basins with a high debris-flow hazard where 
there are downstream values at risk present. The results can 
also provide an additional, objective metric to rank basins 
and watersheds in comprehensive hazard assessments. For 
example, postfire debris-flow combined hazard classification 
and annual probability could be applied to identify and rank 
areas where modeling of debris-flow inundation would sup
port the development of state and local hazard mitigation 
plans that comply with the Federal Disaster Mitigation Act 
(2000). 

Limitations on applying the debris-flow likelihood 
results 

Fire behavior is highly variable, and we were unable to 
accurately predict burn severity for individual basins in 
most cases (Fig. 9). However, we were somewhat successful 
at predicting the mean debris-flow likelihood even when 
using a regional Pdsim value (Fig. 7). Our results of predicted 
debris-flow likelihood represent a simplified scenario in 
which burn severity is controlled by vegetation type only. 
Using EVT to predict dNBR does help capture some variabil
ity observed in fire behavior but is limited by our inability to 
account for other factors that drive fire behavior. Simulated 
dNBR and the corresponding Burned Area Reflectance 
Classification (BARC) maps can be used to identify basins 
with high debris-flow likelihood under a simplified wildfire 
scenario that depends solely on EVT. Since fire behavior is 
difficult to predict, this simplified scenario is best at identi
fying areas that are naturally more prone to debris flows due 
to hillslope gradient, soil characteristics (through Kf factor), 
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low-moderate
BARC break

Increasing BARC break

272 310 312

Modoc Plateau,
Basin and Range,
Southern Deserts

Southern
Sierra

Nevada

Southern
Cascades

Northern
Sierra

Nevada

Northern
Coast

Ranges

Klamath
Mountains

Transverse
and

Peninsular
Ranges

Central
Coast

Ranges

315 316 321 332 350

Pdsim

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8. Box and whisker plots summarizing 
distributions of fire-wide Pdsim values by region 
with increasing Burned Area Reflectance 
Classification (BARC) breaks for the lowest Root 
Mean Square Error (RMSE) method. Outliers 
shown as circular markers.   
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Fig. 10. Statewide prefire modeling results showing simulated differenced Normalized Burn Ratio (dNBR) (a), simulated Burned Area 
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is exceeded for a debris-flow likelihood value of 50% (P(R > T); g), annual fire probability (P(F); h), and annual probability of a fire and 
subsequent above-threshold rainfall intensity within the year following fire (P(F) × P(R > T); i).   
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and regional fire behavior (via calibrated prediction of 
dNBR and regional BARC breaks) – all of which are known 
prior to the fire. 

Opportunities for future work 

Improving our ability to forecast where landscapes are likely 
to experience moderate and high burn severity would dra
matically improve our ability to accurately predict debris- 
flow likelihood. Once rainfall intensity is accounted for, 
moderate and high burn severity in conjunction with slope 
gradient are the most important factors influencing the 
occurrence of debris flows (Staley et al. 2017). There are 
likely opportunities to better predict burn severity and 
debris-flow likelihood using machine learning and other 
techniques. Although machine learning has been applied to 
many fire-related investigations, there have been relatively 
few attempts to use machine learning to predict fire severity 
(Jain et al. 2020; Klimas et al. 2025). Fire behavior and effects 
are fundamentally difficult to predict and the few existing 
attempts to use machine learning have been limited in their 
ability to accurately predict burn severity, especially for fires 
on which the model was not trained (e.g. Birch et al. 2015;  
Kane et al. 2015; Wells et al. 2023). Conditions immediately 
prior to the fire such as daily fire weather (air temperature, 
wind speed and direction, relative humidity, etc.) and fuel 
moisture are critical drivers of fire behavior (e.g. van 
Mantgem et al. 2013; Zald and Dunn 2018) and cannot be 
known far in advance; these limitations hamper our ability to 
incorporate critical factors into a postfire debris-flow likeli
hood prediction prior to wildfire. However, other important 
factors such as topography (elevation; aspect; landscape loca
tion – hillslope, ridge, riparian), proximity to developed areas, 
road density, fuel loads, rock type, and seasonal climatic 
information can be considered prior to fire occurrence. 
Indeed, some of these factors have been investigated with 
machine learning. Zald and Dunn (2018) used a random forest 
ensemble model and determined that daily fire weather was 
the most important predictor variable followed by stand age, 
ownership, and topographic position in an area impacted by 
the 2013 Douglas Complex Fire in southern Oregon. Wells 
et al. (2023) found that fuel loads and conditions (e.g. leaf-on 
chlorophyll content), prefire weather, and topography were 
important predictors of burn severity for two fires in north- 
central Colorado. Klimas et al. (2025) used a machine learn
ing model and found that vegetation productivity, elevation, 
and canopy fuels were the most important predictor variables 
in forested land in Utah. Further development of machine 
learning approaches and other methods to estimate fire sever
ity are promising to improve postfire debris-flow likelihood 
predictions prior to wildfire. 

Although our goal was to assess potential debris-flow 
hazards for all of California, some caution should be applied 
when using the debris-flow likelihood and volume models 
(Table 1) in areas outside the original calibration area in 

Southern California. For example, debris-flow sediment 
sourcing (dry ravel, landslide, in-channel storage, hillslope 
rilling), sediment characteristics (grain size, shape, volume 
of available sediment, etc.), storm behavior (convective, 
atmospheric river, etc.) vary in California. These differences 
are currently not accounted for in the debris-flow likelihood 
and volume models, even though they may produce differ
ent debris-flow behavior and characteristics. An expanded 
database of debris-flow triggering conditions and volume is 
required to fully validate the models for all of California. 
These data are currently being collected and we expect that 
future versions of the debris-flow likelihood and volume 
models will include these data in their development. 

Additionally, we note that the goals and methods of this 
study relate to the prediction of postfire debris-flow hazard 
prior to a hypothetical future fire. As such, any predictions 
produced as part of this study that lie within recently burned 
areas reflect the debris-flow likelihood that may be induced 
by the simulated burning of vegetation that may not represent 
actual postfire conditions. To assess the current debris-flow 
hazard in recently burned areas, we recommend consulting 
the USGS hazard assessment produced using observed and 
field-verified burn severity maps (http://landslides.usgs.gov/ 
hazards/postfire_debrisflow). Similarly, as the data products 
used in our modeling approach are current as of August 2022, 
changes in EVT and/or fire probability that have occurred 
after that date (likely by recent fire) are not reflected in our 
model output. 

Additional limitations of this study are outlined below. 
The climate products from NOAA Atlas14, though currently 
the most comprehensive estimate of rainfall-intensity clima
tology in the study area, quantify only the past climatology 
in the area rather than future climate. As a result, they may 
not capture changes in rainfall climatology that may result 
from an ongoing climate change. Additionally, many of the 
gage records used in the computation of the Atlas14 product 
are less than 50 years in duration, meaning that the 50-year 
15-min product is based on extrapolation rather than true 
quantification of the 50-year recurrence interval storm. 
Furthermore, the link between drought and short-duration 
rainfall intensities important for runoff-generated debris- 
flow occurrence is poorly understood and provides an oppor
tunity for future climate modeling work that may improve 
prefire predictions. 

The FSim fire probability product also has several limita
tions. Similar to Atlas14, the weather component of the fire 
probability simulation is based on past climate records 
rather than future climate predictions. The model is also 
calibrated only on fires >100 ha in size, though the authors 
acknowledge that the role of fires smaller than this thresh
old on overall fire probability is likely negligible. Also, the 
latest statewide release of FSim is valid from August 2022, 
so the decreases in future fire probability present in areas 
burned between August 2022 and the release of this study 
are not captured in our products. 
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Conclusion 

We presented a consistent methodology to model postfire 
debris-flow hazards in California prior to wildfire using simu
lated differenced Normalized Burn Ratio (dNBR) data cali
brated from 2020 to 2021 fire data, NOAA Atlas 14 rainfall 
data, and fire probability data developed by Pyrologix. The 
dNBR and other data were used to predict debris-flow likeli
hood and volume for a 15-min rainfall intensity of 24 mm h−1. 
The largest source of uncertainty in predicting postfire 
debris-flow likelihood and volume is due to the difficulty 
in predicting dNBR, a proxy for soil burn severity, prior to 
wildfire. Our approach tended to produce regionally consist
ent simulated dNBR while actual fires will produce a wider 
range in dNBR. Some areas will experience lower burn sever
ity while other areas will experience higher burn severity. 
Areas that burn at high soil burn severity will experience 
higher debris-flow likelihood relative to debris-flow likeli
hoods presented here. Because the debris-flow likelihood 
and volume predictions are for a fixed rainfall intensity and 
assume that a fire has occurred, we also calculated the annual 
probability that a wildfire and the 15-min triggering rainfall 
intensity for a debris-flow likelihood of 50% will occur using 
NOAA Atlas14 rainfall recurrence data, the debris-flow likeli
hood model, and the Pyrologix fire probability product. This 
debris-flow product can be used to identify regions that are 
most likely to experience postfire debris flows. Once these 
regions are identified, our debris-flow likelihood and volume 
products can be used to target specific basins that would 
benefit from prefire mitigation efforts, such as improvements 
to stream crossings. Ultimately, these products of postfire 
debris-flow prediction prior to wildfire should aid prefire 
efforts to mitigate debris-flow risks. 
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