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ABSTRACT

Background. Wildfires and consequent postfire hazards, specifically runoff-generated debris
flows, are a major threat to California communities. Aim. To help prefire planning efforts across
California, we identified areas that are most susceptible to postfire debris flows before fire
occurs. Methods. We developed a calibration method for an established model that relates
existing vegetation type to fire severity, a critical input to the US Geological Survey’s postfire
debris-flow likelihood model. We calibrated the model for eight regions with data from 81
wildfires that occurred in 2020 and 2021 in California. Key results. We predicted debris-flow
likelihood, volume, and combined hazard classification, and created statewide maps that use
simulated fire frequency and rainfall data to predict the probability that a basin will experience a
wildfire and subsequent debris flow. Conclusions. We suggest that the model predictions are
useful for identifying areas that pose the greatest risk of postfire debris-flow hazard for a
simplified wildfire scenario. Implications. Although actual patterns of wildfire severity may vary
from our simulated products, we show that applying a consistent methodology for all of
California is useful for identifying areas that are likely to pose the greatest postfire hazards,
which should help focus prefire mitigation efforts.

Keywords: annual probability of postfire debris flow, California wildfires, existing vegetation
type, geohazards, postfire debris flows, prefire hazard mitigation, risk assessment, runoff-

generated debris flow, simulated burn severity, simulated fire, statewide prefire planning.

Introduction

Since the 1980s, California wildfires have increased in number, size, and severity, result-
ing in significant impacts to the environment, economy, and society (Li and Banerjee
2021). This is particularly evident in the past two decades where 18 of the 20 largest
wildfires in California history have occurred since 2000, and where 15 of the 20 most
costly and destructive fires to property in the state have occurred since 2015 (California
Department of Forestry and Fire Protection 2024). Factors influencing the frequency, size,
and destructiveness of wildfires include droughts and rising temperatures aggravated by
climate change, as well as fire suppression, land management policies, and human
encroachment into wildlands (Radeloff et al. 2018; Belongia et al. 2023).

One of the more impactful postfire hazards in California are runoff-generated debris
flows that frequently occur within 3 years following fire and can damage ecosystems,
critical infrastructure, and pose a risk to life safety within and downgradient of the burned
area (e.g. Kean et al. 2019; Thomas et al. 2023; Zekkos and Stark 2023; Rundio et al.
2024; Swanson et al. 2024). Emergency managers, road and critical facility engineers, and
flood control district officers are often challenged with little time to design and construct
mitigation measures or develop and implement postfire response and evacuation plans

Collection: Establishing Directions in Postfire Debris-Flow Science
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Fig.1. Prefire modeling regions across California;
outer region boundaries were adjusted to match
the HUI0 watershed boundaries and were split
across the centerlines of large valleys.

between the fire and the first triggering rainstorm (Kean et al.
2019). Knowing the potential of postfire hazards under hypo-
thetical burn scenarios can provide emergency managers,
road and facility engineers, and flood control officers with
information to better prepare for inevitable wildfires.

More advanced knowledge of wildfire effects and associ-
ated impacts across California is required to make informed
decisions prior to fire and build additional resilience against
postfire hazards under a changing climate (Kean and Staley
2021). To contribute to this effort, we developed a statewide
map that predicts the spatial distribution of fire severity and
runoff-generated postfire debris-flow hazards. Benefits of this
statewide modeling and mapping effort include (1) an assess-
ment of threats to downstream values at risk (e.g. homes,
bridges, and other infrastructure) that can be used to prioritize
fuels treatments, (2) readily available data and maps that
can immediately inform active suppression operations and

emergency response efforts, (3) information that local gov-
ernments can apply in residential development plans, zoning
maps, and local hazard mitigation plans, (4) data to identify
additional resource needs and support funding opportunities
from federal and state sources (e.g. grant funds), and (5)
information to assist in identifying and designing potential
mitigation measures to reduce downstream hazards.

Methods

Prefire modeling regions

Because fire behavior and severity vary across California
(e.g. Parsons et al. 2010; Estes et al. 2017), we determined
prefire modeling regions based upon patterns in fuels,
topography, and climate. To account for differences in fuel
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type, we referred to the National Vegetation Classification
Standard zones (US Forest Service 2009), which group exist-
ing vegetation types that co-occur within landscapes with
similar climate, substrates, and ecological processes. To
account for differences in topography, and other physio-
graphic controls, we referred to a map of geomorphic prov-
inces that are characterized by distinct geology, topography,
and plant communities (California Geological Survey 1997).
Once the initial regions were identified, their margins were
further refined using the watershed hydrologic unit (HU10)
boundaries within the Watershed Boundary Dataset (US
Geological Survey 2024) and valley centerlines (Fig. 1).

Simulation of regional fire and burn severity for
predicting postfire debris-flow hazards across
California

As numerous factors affect fire behavior (e.g. van Mantgem
et al. 2013; Zald and Dunn 2018), many of which cannot be
estimated prior to fire, we simulated fire severity across
each prefire modeling region using established relationships
between observed existing vegetation type and the change
in surface and subsurface organic matter composition (i.e.
differenced Normalized Burn Ratio: dNBR,; Staley et al. 2018;
Kean and Staley 2021). Staley et al. (2018) developed a two-
parameter Weibull cumulative distribution function (CDF)
for 282 unique LandFire Existing Vegetation Type (EVT)
classes present within 3163 historical burn areas across the
western US using data available between 2001 and 2014
(LandFire 2022). To incorporate change in landcover across
the state associated with disturbances since 2014, including
wildfire, we created a map of the most recent EVT classes
with established CDF parameters (Staley 2018). Where there
were no data values or EVT classes present without corre-
sponding CDF parameters, we back sampled from previous
EVT datasets to assign EVT classes that closely matched
observed conditions. This enabled us to create a continuous,
statewide map of EVT data for which corresponding CDF
parameters exist.

To simulate dNBR, we used the CDF parameters for each
EVT class and the same parameters for each prefire region.
The cumulative probability of the Weibull CDF at which fire
severity is being simulated is represented by Pg,. For exam-
ple, entering the CDF at a Pggy of 0.5 (50th percentile)
describes the median fire severity for each EVT class; entering
at a Pggm of 0.9 (90th percentile) describes an abnormally
high fire severity for that EVT class. We chose to calibrate the
P4sim parameter for each prefire region and two calibration
approaches are described in the following section. These
approaches do not capture variability due to local conditions
(e.g. wind direction) but aim to represent potential regional
outcomes based on historical burn severity observations.
Simulated dNBR for each EVT class was estimated from Eqn 1
in Table 1. Lastly, the simulated dNBR map was classified into
Burned Area Reflectance Classification (BARC) categories of

unburned/very low, low, moderate, and high burn severity, as
described in the next section.

To predict the debris-flow hazard within the first year
following fire, the simulated dNBR and BARC maps, along
with a fixed 15-min rainfall intensity (I;5) of 24 mm h™!, were
used as input variables in the US Geological Survey’s (USGS)
postfire debris-flow hazard assessment model equations for
predicting debris-flow likelihood, volumes of sediment depos-
ited by debris flows (herein referred to as ‘volume’), and rain-
fall intensity-duration thresholds (Table 1). We used an I;5 of
24 mm h™, as I;5 is a better predictor of runoff-generated
postfire debris-flow occurrence than rainfall intensities mea-
sured over longer durations (e.g. Kean et al. 2011; Staley
et al. 2013; Thomas et al. 2023) and is also the rainfall
intensity metric used in the volume model (Gartner et al
2014). Furthermore, 24 mm h™! is close to the mean and
median I 5 associated with a 1-year recurrence interval within
our modeled area. Staley et al. (2020) show that postfire
debris flows are most commonly triggered by the 1-year
recurrence interval I;s. For this reason, the 24 mm h™! rain-
fall intensity is frequently applied in USGS postfire debris-flow
hazard assessments (e.g. Staley et al. 2017; Barnhart et al
2021). We used a debris-flow likelihood value of 50% to solve
for rainfall intensity-duration thresholds (Table 1).

Calibration methods

We considered two calibration methods, one focused on
reproducing BARC maps (herein referred to as the ‘BARC
map calibration’) whereas the other focused on reproducing
the best match to the debris-flow likelihood results pro-
duced by the USGS debris-flow likelihood model using
observed dNBR values (herein referred to as the ‘DFL cali-
bration”). We refer to the USGS debris-flow likelihood model
results as ‘observed’ because the values are calculated from
observed dNBR and observed BARC values from postfire
satellite data. Each method used a fire calibration set com-
posed of California wildfires in the Monitoring Trends in
Burn Severity (MTBS) database for 2020 and 2021 that
contain low-moderate BARC breaks and fire area above
10 km? (MTBS 2022; Fig. 2). We focused on low-moderate
BARC breaks instead of moderate-high BARC breaks because
the USGS debris-flow likelihood and volume models do not
distinguish between moderate and high BARC values. We
limited our calibration of P4, to these fires for several
reasons, including (1) the distribution of fires included in
the calibration set are spatially distributed across a wide
range of physiographic regions; (2) the difference in mean
MTBS burn severity in the calibration set is not statistically
significant (P = 0.26) compared to the full set of fires in the
MTBS dataset from 1984 to 2021; and (3) the unavailability
of post-2021 MTBS data at the time of analysis. We calcu-
lated the median of the low-moderate BARC break values for
the calibration fires for each prefire modeling region (Fig. 2)
to generate regional BARC break values that were used to
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Table 1. Summary of prefire simulated dNBR equation and USGS postfire debris-flow hazard models.

Name Equation Citation
Simulated differenced Normalized SimdNBR = A[— In(l — Pyim)]/* x 2000 — 1000 @ Staley
Burn Ratio (dNBR) for each Existing et al. (2018)
zlegztatio; Type (EVT) class A = best-fit scale parameter for each Weibull cumulative distribution function (CDF)
SimdNBR]

Kk = best-fit shape parameter for each Weibull CDF

Pasim = percentile of the Weibull CDF at which fire severity is being simulated
Debris-flow likelihood (DFL) DFL = exp(X)/(1 + exp(X)) @ Staley

et al. (2016)
X= —3.63 + (041 x X x R) + (0.67 x X x R) + (07 x X x R)

X; = proportion of upslope basin area burned at high or moderate severity with

gradient in excess of 23 degrees

X, = average dNBR of upslope basin area divided by 1000

X5 = soil erodibility index of the fine fraction of soils (i.e. Kf factor)

R = 15-min rainfall accumulation (mm)
Debris-flow volume (DFV, m’) DFV = exp(4.22 + 0.39 x sqrt(hs) + 036 x [n(Bmh) + 0.13 x sqrt(Relief))  (3) Gartner

et al. (2014)

hs = 15-min rainfall intensity (mm h™)

Bmh = upslope basin area burned at high or moderate severity (km?)

Relief = upslope basin relief (m)
Rainfall intensity-duration threshold T = (In(DFL/1 — DFL) + 3.63)/((041 x X) + (0.67 x X,) + (0.7 x X3)) O)) Staley
(T, mm h7) et al. (2017)

DFL = likelihood value used for debris-flow threshold (i.e. DFL = 0.5)

X; = proportion of upslope basin area burned at high or moderate severity with

gradient in excess of 23 degrees

X, = average dNBR of upslope area divided by 1000

X3 = soil erodibility index of the fine fraction of soils (i.e. Kf factor)

calculate the area burned at moderate and high severity. A
calibrated Py, value was determined for each fire. The
regional Pgs,, value was calculated as the median of the
Pgsim values for fires in the same region.

For the BARC map calibration, Py, was chosen to pro-
duce a combined moderate and high BARC area, produced
from modeled dNBR values and regional BARC breaks, that
is equal to or greater than the observed combined moderate
and high BARC area. For the DFL calibration, P4, was
calibrated to produce the lowest Root Mean Square Error
(RMSE) for the simulated debris-flow likelihood and the
observed debris-flow likelihood results. We use the observed
MTBS dNBR values, fire-specific MTBS BARC breaks, and
15-min rainfall intensity of 24 mm h ™" for basins inside the
fire perimeter as input to the USGS debris-flow likelihood
model to calculate observed debris-flow likelihood results.
These results were generated using the postfire debris-flow
(‘pfdf) Python library (King 2023). The DFL calibration
procedure is summarized in a flowchart in Fig. 3. For the
DFL calibration, basins with less than 75% of their area
inside the fire perimeter or a median observed dNBR value

below the fire-specific MTBS unburned-low BARC break
were excluded from the calibration.
Calibration assessment

To assess which calibration approach produced better results,
we compared the Nash-Sutcliffe Efficiency (NSE) for the two
calibration approaches. NSE was calculated as:

; ;2
2 (DFLgps — DFLY,)

(5)
i _2
>n_ (DFLyy,, — DFL ;)

where DFL,s is the fire-wide mean observed debris-flow
likelihood calculated from the USGS debris-flow likelihood
model (Staley et al. 2016), DFLgy, is the fire-wide mean
simulated debris-flow likelihood for the respective calibration
approach, i represents each calibration fire, and n is the total
number of calibration fires. Regional BARC breaks and
regional Pgg, values were used for the simulated debris-
flow likelihood model runs whereas observed MTBS BARC
breaks were used for the observed debris-flow likelihood
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Fig. 2. Py calibration methods. Calibration fires (n = 81) from 2020 to 2021, with table showing number of
fires by region (a); median low-moderate Burned Area Reflectance Classification (BARC) break values (b);
regional Py values (c); Root Mean Square Error (RMSE) calculated to compare the simulated and observed
debris-flow likelihood for basins inside the fire perimeters (d). Abbreviations: CCR, Central Coast Ranges; KM,
Klamath Mountains; MBD, Modoc Plateau, Basin and Range, and Southern Deserts; NCR, Northern Coast
Ranges; NSN, Northern Sierra Nevada; SC, Southern Cascades; SSN, Southern Sierra Nevada; TPR, Transverse

and Peninsular Ranges.
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Fig. 3. Flowchart summarizing the regional Py, calibration and low-moderate Burned Area Reflectance
Classification (BARC) break calculation procedure detailed in the Methods section. Inputs, outputs and
intermediate steps are shown in blue, green, and white boxes, respectively. Abbreviations: DFL, debris-
flow likelihood; dNBR, differenced Normalized Burn Ratio; DEM, Digital Elevation Model; EVT, Existing

Vegetation Type; MTBS, Monitoring Trends in Burn

model runs. We focused our discussion on the calibration
approach that produced the highest NSE.

Postfire debris-flow model and prefire inputs

The simulated dNBR map was generated from the EVT map
(Table 2) using the established EVT-dANBR relationships
(Staley et al. 2018) and the regional Py, values. The simu-
lated dNBR map was then classified into a simulated BARC
map using the regional median low-moderate BARC break
values.

To only model debris-flow likelihood and volume where
runoff-generated postfire debris flows could initiate, we
adopted the standard USGS basin area criteria (0.025-8 km?;
Staley et al. 2016) and masked the model domain to prevent
basin delineation in flat areas (Table 2). Though flat areas
could experience inundation from debris flows generated
upstream, the USGS models used in this study are only

Severity.

intended to model initiation, not runout. We then ran the
debris-flow likelihood and volume models within the pfdf
Python library (King 2023) separately for each subbasin
hydrologic unit (HU8) boundary in California in the
Watershed Boundary Dataset to increase computational effi-
ciency relative to modeling the full state in one iteration. We
used subbasins (HU8) for most regions and watersheds
(HU10) in the Basin and Range and Southern Deserts region,
which we found to minimize basin delineation artifacts.

Annual probability of postfire debris flows across
California

The annual probability of occurrence of a particular rainfall
intensity varies widely across the diverse climates of Cali-
fornia. Therefore, climatological information was required to
predict the annual exceedance probability P(R > T) of a
rainfall intensity (R) exceeding the modeled rainfall intensity

6
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Table 2. Datasets used in the statewide prefire modeling of postfire debris-flow hazards.

Dataset name

Description

Source

Cumulative distribution function
(CDF) parameters

EVTAP

Calibrated Py, and Burned Area
Reflectance Classification (BARC)
break values by region

Digital Elevation Model (DEM)"
Kf factor”

Model domains®

Masks”

Best-fit Weibull CDF parameters that relate each Existing Vegetation Type
(EVT) class to a differenced Normalized Burn Ratio (dNBR) value; used to
calculate simulated dNBR.

EVT rasters (30-m) used to generate simulated dNBR inputs.

Calibrated Py, values and the median low-moderate BARC breaks
(calibration fire dataset) for each of the eight prefire modeling regions.

Mosaic of 1/3 arc-second digital elevation tiles.

Soil erodibility index of the fine fraction of soils; STATSGO soil polygons
assigned with ‘KFFACT’ attribute; values less than O were excluded from the
analysis.

Subbasin (HU8) and watershed (HU10) boundary polygons from the Watershed
Boundary Dataset that were used to define the model domain.

A set of masks were used to exclude areas of low slope or open water from
the model domain where debris flows are unlikely to initiate and to minimize
artifacts in basin delineation.

Valley mask: A focal statistics algorithm was used to calculate the standard
deviation of elevation within a 200 m radius of every cell in the DEM. Clusters
of cells with values less than or equal to 5 m were converted to polygons, and
all polygons with an area less than 1 km? were deleted.

Sink mask: To create the sink mask, the portion of the pfdf Python library
(King 2023) which generates a flow direction raster was run and DEM
conditioning criteria of filled pits, filled depressions, and unresolved flats was
selected. The areas marked as null in this output directly correspond to areas
mapped erroneously as basins. We converted these clusters of null values to
polygons and deleted all polygons with an area less than 1km?. To ensure that
all polygons of the sink mask were in valley areas, we deleted all polygons that
did not intersect the valley mask.

Water mask: Two data sources were used to mask out large bodies of water,
including water bodies boundaries and the 2022 EVT open water classification.

Staley (2018)

LandFire (2022)
MTBS (2022)

US Geological Survey (2024)

Schwartz and
Alexander (1995)

US Geological Survey (2023)

LandFire (2022), US
Geological Survey
(2020, 2023)

AProjected to California Teale Albers (datum: NAD 1983); 10-m resolution.

BWe used the LandFire EVT rasters to generate two EVT maps that contain the most recent EVT classes with established CDF parameters to use in the calibration
of Pysim (2020 EVT map) and the prefire modeling (2022 EVT map). Pixels that contained a no data value in the EVT maps were assigned an EVT code of 7294 (i.e.

barren).

threshold (T). The National Oceanic and Atmospheric
Administration (NOAA) Atlas14 product (Perica et al. 2014)
describes the 15-min rainfall intensity associated with particu-
lar recurrence intervals (RI) from 1 to 1000 years. These
products are spatially continuous across the state with a cell
size of 800 m. The relationship between a particular rainfall
intensity and its expected RI is log-linear and can be expressed
as Eqn 6 in Table 3. To estimate m and b, the mean values of
the 1- and 50-year rainfall intensity (Fig. 4) at each basin were
extracted using a zonal statistics algorithm, and m and b were
estimated using Eqns 7 and 8 in Table 3. The RI of the modeled
rainfall intensity threshold was then computed for each basin.
To convert RI to annual exceedance probability P, we used
Eqn 9 in Table 3.

With this workflow, we estimated the RI and associated
annual exceedance probability of the modeled rainfall inten-
sity threshold at each basin, after it has burned. However, as
the aim of this study is to model debris-flow likelihood

before a fire occurs, a true prefire estimate of postfire
debris-flow likelihood should also take into account the
probability that a fire actually occurs (i.e. P(F)) in a partic-
ular basin (e.g. Kean and Staley 2021). For typical climatic
conditions (i.e. neither drought nor extremely wet condi-
tions), we expect a weak relationship between the occur-
rence of threshold-exceeding rainfall intensity and fire, and
we treat their occurrence as independent of one another. For
typical conditions, which we aim to model in this study, we
estimate the annual probability of a postfire debris flow is
thus the product P(F) X P(R > T).

To estimate P(F) we used the wildfire simulation model
(FSim) product developed by Pyrologix in conjunction with
the US Forest Service and California Department of Forestry
and Fire Protection, which estimates annual fire probability
(regardless of severity) in a spatially continuous 30-m grid
across the state (Vogler et al. 2021; US Forest Service 2023;
Fig. 4). The FSim product captures variability in localized

7
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Table 3. Summary of equations used to calculate annual probability.

Name

Equation

Citation

Recurrence interval (RI)

RI = 10mhs+b 6)

hs = 15-min rainfall intensity (mm h™)

m = slope of the log-linear relationship between

Perica et al. (2014)

intensity and RI (Eqn 7)

b = y-intercept of the log-linear relationship

between intensity and RI (Eqn 8)

m, b _
= log(50) — log(1)

50yrl15 - 1yrl]5

b=—mxlyrks

lyrhs = 1-year rainfall intensity (mm h™)

Perica et al. (2014); m and b calculated using zonal

50yrhs = 50-year rainfall intensity (mm h™)

Annual exceedance
probability (P)

P=1— e

Rl = recurrence interval (Eqn 6)

@ statistics algorithm in QGIS (version 3.34.)
(8
) Feller (1991)

200 km 200 km

— —-
1-year I (mmh™") [ 50-year I, (mm h™)
0 75 1 0 150

Fig. 4. Maps of inputs to the annual probability analysis: Atlasi4 1-year (a) and 50-year (b) 15-min rainfall intensity (/;s), and the FSim annual
burn probability product (P(F)) (c; Vogler et al. 2021; US Forest Service 2023).

fire conditions and behavior, including changes in fuel mois-
ture content, combinations of wind speed, wind direction,
topography, and historical fire occurrence across the land-
scape (Vogler et al. 2021; U.S. Forest Service 2023). We then
computed the mean P(F) value for each basin and multiplied
it by the basin’s P(R > T) prediction to yield an annual
probability of fire followed by above-threshold rainfall in
the year following fire. The prefire modeling and annual
probability procedure is summarized in Fig. 5.

Results

Existing vegetation type map

The Existing Vegetation Type (EVT) classes that we replaced
within the EVT maps varied in total area by region.
Approximately 20% of the prefire modeling region domain
was mapped with EVT classes drawn from preceding EVT
rasters used in both the calibration of P4, (2020 EVT map)
and the simulated differenced Normalized Burn Ratio (ANBR)
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USGS hazard assessment models

Debris-flow
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volume
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»
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g o

threshold (T7) Recurrence
e interval
analysis
A
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Ly, ¥

Annual
probability
analysis
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Flowchart outlining the prefire hazard modeling procedure and associated map products. We used a 15-

min rainfall intensity of 24 mm h™ as an input to the debris-flow likelihood and volume models. This procedure is
detailed in the Methods section. Abbreviations: BARC, Burned Area Reflectance Classification; dNBR, differenced
Normalized Burn Ratio; EVT, Existing Vegetation Type; RMSE, Root Mean Square Error; R, rainfall intensity; T,
modeled rainfall intensity threshold; P(R > T), annual probability that the 15-min triggering rainfall intensity is
exceeded for a debris-flow likelihood value of 50%; P(F), annual fire probability; P(F) x P(R > T), annual probability of
a fire and subsequent above-threshold rainfall intensity within the year following fire.

maps used in the prefire modeling (2022 EVT map; Fig. 6).
The total replaced area of EVT classes ranged from ~5% in
the Klamath Mountains to ~35% in the Central Coast Ranges
and Southern Sierra Nevada and mostly consisted of low-
elevation slopes along the margin of the Sacramento and
San Joaquin Valleys.

Comparison of calibration methods

We compared results for two Py, calibration methods to results
for Pgsim of 0.50 (Fig. 7) for 81 calibration fires (Table 4). The

DFL calibration produced a higher Nash-Sutcliffe Efficiency
value (NSE = 0.57) relative to the Burned Area Reflectance
Classification (BARC) map calibration (NSE = 0.37) with
regionally calibrated Pgg,,, values or using a fixed Py, of 0.50
(NSE = 0.22; Fig. 7). Because the DFL calibration produced the
highest NSE value of the two calibration methods that we
considered, we focused our results and discussion on the results
from the DFL calibration. We also considered the consequences
of predicting debris-flow likelihood using a fire-specific Pygimy,
instead of the regional median Pgg,. The fire-specific Pygim
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Fig. 6.

2022 EVT map (Table 2) showing the spatial distribution of Landfire EVT classes across the prefire modeling regions, with each

Landfire EVT class shown in a different color (a) and location of replaced EVT classes across the California prefire modeling region

domain, where a Staley (2018) CDF is undefined (b).

produced a better relationship between the simulated and
observed debris-flow likelihood (NSE = 0.98; Fig. 7).

The Root Mean Square Error (RMSE) values of the calibra-
tion were generally low but varied by region (Fig. 7, Table 5).
For example, calibration fires for the Central Coast Ranges
produced the highest RMSE (0.18) while the region that
includes the Modoc Plateau, Basin and Range, and Southern
Deserts produced the lowest RMSE (0.03) (Fig. 7, Table 5).
Figs 2 and 8 present Pgg, results for each region. Basins
where the simulated dNBR closely matched the observed
dNBR typically produced the closest match between simulated
and observed debris-flow likelihood (Fig. 9). Observed basin
dNBR exhibits a much wider range in values relative to
simulated Py, values (Fig. 9). The limited range of simulated
dNBR values constrained the ability of the model to reproduce
observed dNBR distributions. Regions with lower moderate
BARC breaks typically produced lower calibrated Pgg,, val-
ues (Fig. 8).

The wide range in calibrated Py, values (Figs 2, 8) is
strong evidence that fire behavior and severity vary widely
even for a single region. For some regions, we reproduced
the mean debris-flow likelihood using a regional calibration.
In particular, the Modoc Plateau, Basin and Range, Southern
Deserts and the Southern Cascades produced relatively low
RMSE values (0.03 and 0.04, respectively) while the Klamath

Mountains (RMSE = 0.13) and Central Coast Ranges
(RMSE = 0.18) produced the highest RMSE. The Northern
Coast Ranges (RMSE = 0.07), Northern Sierra Nevada
(RMSE = 0.07), Southern Sierra Nevada (RMSE = 0.08)
and Transverse and Peninsular Ranges (RMSE = 0.08) pro-
duced results with intermediate RMSE. In most cases, the
ability to predict the mean debris-flow likelihood is much
better than the ability to predict the debris-flow likelihood
of basins within an individual fire perimeter (Table 5). For
example, the RMSE for the fire-wide mean debris-flow likeli-
hood is substantially lower than the RMSE calculated from all
calibration basins in the region (RMSE = 0.02 for the fire
mean versus RMSE = 0.21 for calibration basins for the fire-
specific Pgsim and RMSE = 0.09 for the fire mean versus
RMSE = 0.22 for calibration basins for the regional Pyg;y,;
Table 5).

Statewide prefire map products

Using the methods described above, we generated nine map
products relevant to predicting postfire debris-flow hazard
prior to fire (Rossi et al. 2025). The simulated dNBR and
simulated BARC (four classes; Fig. 10) maps were generated
prior to running the USGS models and resulted from the simu-
lated burning of existing vegetation according to the regional

10
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Fig. 7. Comparison of fire-wide mean debris-flow likelihood for fixed Py, = 0.50 (a) and calibration to best match
to percent moderate-high burn severity (i.e. Burned Area Reflectance Classification (BARC) map calibration) (b), and
lowest Root Mean Square Error (RMSE) for observed and simulated debris-flow likelihood (i.e. DFL calibration) (c).
Uncertainty bars show two standard errors of the mean for the basins inside the respective fire perimeter. The
uncertainty bars indicate the relative width of the distributions for the simulated and observed debris-flow
likelihood for a single fire (since the sample size for simulated and observed debris-flow likelihood match for the
same fire). Results and statistics are for simulated and observed debris-flow likelihood for basin dNBR,,s > unburned-
low BARC break (Tiow). Abbreviations: dNBR, differenced Normalized Burn Ratio; NSE, Nash-Sutcliffe Efficiency.

Pgsim and regional BARC breaks that provided the best match of
simulated to observed debris-flow likelihood results. The spatial
data generated by the USGS models include debris-flow likeli-
hood (calculated using I;5 = 24 mm h™b, rainfall intensity
threshold (calculated using debris-flow likelihood = 50%),
volume, and combined hazard classification (Fig. 10).
Combined hazard classification was determined by combining

the USGS modeled debris-flow likelihood and volume and
assigning a combined hazard class as low, moderate, or high
(Cannon et al. 2010). The products associated with the annual
probability methods include annual probability of exceedance
of the predicted rainfall intensity threshold, annual fire proba-
bility, and annual probability of fire and subsequent above-
threshold rainfall in the year following fire (Fig. 10).
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Table 4. List of calibration fires by region.

Region

Calibration fires®

Central Coast Ranges
Klamath Mountains
Modoc Plateau/Basin and
Range/Southern Deserts
Northern Coast Ranges
Northern Sierra Nevada
Southern Cascades

Southern Sierra Nevada

Transverse and Peninsular

Carmel (30 km?), Crews (23 km?), CZU August Lightning (348 km?), Dolan (503 km?), Mineral (121 km?), River (209 km?), SCU
Lightning Complex (1642 km?), Willow (13 km?)

Cronan (31 km?), Devil (37 km?), Fawn (37 km?), Haypress (828 km?), Knob (10 km?), McCash (388 km?), McFarland (492 km?),
Monument (915 km?), Red Salmon Complex (597 km?), Salt (51 km?), Slater (639 km?), Zogg (230 km?)

Baccarat (41 km?), Coles Flat (167 km?), Dexter (12 km?), Gold (88 km?), Junction Ranch (38 km?), Mountain View (58 km?),
North (28 km?), Sheep (118 km?), Slink (107 km?), Tamarack (284 km?), W-5 Cold Springs (340 km?)

August Complex (4325 km?), Glass (275 km?), Hennessey (1272 km?), McFarland (492 km?), Meyers (10 km?), Wallbridge
(223 km?), Woodward (20 km?)

Caldor (917 km?), Dixie (3965 km?), Hog (39 km?), Loyalton (184 km?), North (28 km?), North Complex (1281 km?), River
(11 km?), Sheep (118 km?), Sugar (439 km?)

Antelope (574 km?), Caldwell (331 km?), Dixie (3965 km?), Lava (106 km?), Tennant (48 km?)

Bluejay (28 km?), Castle (706 km?), Creek (1544 km?), Dexter (12 km?), French (111 km?), KNP Complex (364 km?), Moc (13 km?),
Rattlesnake (37 km?), River (41 km?), Slink (107 km?), Stagecoach (31 km?), Tamarack (284 km?), Tiltill (11 km?), Walkers (36 km?),
Windy (396 km?)

Alisal (72 km?), Apple (131 km?), Blue Ridge (56 km?), Bobcat (468 km?), Bond (27 km?), Creek 5 (18 km?), El Dorado (90 km?),

Ranges India (98 km?), Lake (125 km?), Ranch 2 (18 km?), Silverado (51 km?), Snow (26 km?), Southern (22 km?), Valley (67 km?)

AFire area included in parentheses; fires that were used in more than one region are listed in bold text.

Discussion

Limitations of simulating dNBR

One limitation of our approach is that we used relationships
between Existing Vegetation Type (EVT) and differenced
Normalized Burn Ratio (dNBR) developed by Staley et al.
(2018) and new EVT classes have been introduced in
California since the Staley et al. (2018) study. Instead of
developing new EVT-dNBR relationships for the new EVT
classes, we reclassified the new EVT classes with previous
EVT classes. Updated cumulative distribution function (CDF)
parameters could be calculated for areas where we applied
replacement EVT classes, but it remains unclear how much
these new EVT classes might impact simulated fire severity.
For example, California Ruderal Grassland, a new grassland
EVT class that widely occurs within the Central Coast Ranges
and Southern Sierra Nevada, was replaced in our EVT map
with a more spatially variable set of preceding EVT classes
that included grassland, shrubland, and forest EVT classes.
Updated CDF parameters for this new grassland EVT are
likely to represent similar fire severity to our replacement
grassland EVT class. In this example, our replacement EVT
classes of shrubland and forest likely simulate higher fire
severity than the new grassland EVT class and thus we
provide a more conservative representation of fire severity
in these locations.

P4sim calibration

Expanding the calibration dataset to include additional fires
may influence the regionally calibrated P, values, but our
ability to reproduce variance in basin debris-flow likelihood
is unlikely to improve by expanding the calibration dataset.

This is because our current approach for predicting dNBR
produced a relatively limited range in ANBR values relative
to real fire behavior (Fig. 9) and because predicting variabil-
ity in fire behavior is difficult even with more sophisticated
approaches that predict burn severity (Wells et al. 2023).

The model requires calibration of a single parameter (Pgsy,),
and we calibrated the model to produce a close match
between the mean simulated and observed debris-flow likeli-
hood. Increasing Pggy,, will shift the mean debris-flow likeli-
hood higher while decreasing P, will shift the mean debris-
flow likelihood lower. Even within a single region, there was a
wide range in fire intensity, which required different values of
Pgsim to match mean fire-wide debris-flow likelihood (Fig. 8).
Because fire-specific Py, values varied for a region (Fig. 8),
we used the median Pgg,, for a region to estimate debris-flow
likelihood and produce our debris-flow likelihood maps. The
relatively minimal improvement in Root Mean Square Error
(RMSE) for basins using a fire-specific Py, relative to a
regional Py, (RMSE = 0.21 for fire-specific Py, versus
RMSE = 0.22 for regional Pggy,,) is evidence that there is
limited opportunity to better reproduce the variance in
debris-flow likelihood inside a fire perimeter because the
fire-specific Pg4gp, is already tuned to a value that minimizes
basin debris-flow likelihood RMSE. In other words, the
fire-specific Pggy, calibration already produced the best
match between simulated and observed basin debris-flow
likelihood.

In regions with lower RMSE, we have higher confidence
in our ability to predict mean debris-flow likelihood. In
particular, the Modoc Plateau, Basin and Range, and
Southern Deserts and the Southern Cascades produced rela-
tively low RMSE values (0.03 and 0.04, respectively) rela-
tive to the Klamath Mountains and Central Coast Ranges,

12



www.publish.csiro.au/wf

International Journal of Wildland Fire 34 (2025) WF24225

Table 5. Summary of regional values.

Region Calibration Basins inside fire perimeter™ € Fire-wide mean®¢
Fire Total Total fires 2020/2021 Regional Slope () Observed Simulated Observed Simulated DFL RMSE DFL RMSE DFL RMSE DFL
area (kmz) basins regional Pgsim dNBR dNBR for DFL DFL for for fire- for for fire- RMSE for
median of regional regional specific regional specific  regional
low- Pdsim Pdsim Pdsim Pdsim Pdsim Psim
moderate
BARC
break
Central Coast 2888 4445 8 350 0.56 239 352 342 0.41 0.33 0.24 0.26 0.05 0.18
Ranges
Klamath 4254 7059 12 321 0.40 26.2 391 326 0.44 0.41 0.29 0.33 0.02 0.13
Mountains
Modoc Plateau/ 1280 1891 il 272 0.38 4.7 229 231 0.19 0.20 0 on 0.00 0.03
Basin and Range/
Southern Deserts
Northern Coast 6618 9618 7 316 0.47 221 375 347 0.41 0.41 0.24 0.24 0.01 0.07
Ranges
Northern Sierra 6982 12,782 9 312 0.49 18.5 422 356 0.41 0.39 0.22 0.22 0.00 0.07
Nevada
Southern 5025 7802 5 315 0.52 15.0 378 366 0.34 0.35 0.20 0.20 0.00 0.04
Cascades
Southern Sierra 3721 6243 15 310 0.40 20.4 315 308 0.27 0.25 0.19 0.20 0.01 0.08
Nevada
Transverse and 1269 1939 14 332 0.55 245 313 335 0.33 0.31 0.19 0.19 0.03 0.08
Peninsular
Ranges
Regional mean 4005 6472 10 316 0.47 20.7 347 326 0.35 0.33 0.21 0.22 0.02 0.09

Abbreviations: BARC, Burned Area Reflectance Classification; DFL, debris-flow likelihood; dNBR, differenced Normalized Burn Ratio; RMSE, Root Mean Square Error.

AFor each region, basins inside fire perimeter values were calculated as the mean value for all calibration fire basin values in the region (for example, the mean RMSE of 4445 basins in the Central Coast

Ranges).

BFire-wide mean values were calculated from the mean value for each calibration fire in the region (for example, the mean RMSE of 8 fire values for the Central Coast Ranges).

CIn both cases, basins with observed dNBR less than or equal to the unburned-low BARC break (Tio,) were excluded from the calculations.
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Fig. 9. Comparison of simulated and observed mean differenced
Normalized Burn Ratio (dNBR) values for all calibration fire basins.
Color shows the difference in the observed and simulated mean
basin debris-flow likelihoods (DFLys and DFLg;,, respectively). Basin
values with observed dNBR less than the fire-specific unburned-low
Burned Area Reflectance Classification (BARC) break (T,,) are shown
in gray. The difference between DFL.,s and DFLg, are typically
smallest near the 1-to-1 line. Nash-Sutcliffe Efficiency (NSE, 0.02)
calculated for simulated and observed dNBR for basin dNBR ¢ > Tiow-

which produced relatively high RMSE values (0.13 and 0.18,
respectively; Fig. 7).

Recommendations on applying the debris-flow
likelihood results

The maps and associated data can be used to identify poten-
tial postfire hazards for individual basins as a function of
debris-flow likelihood, volume, combined hazard classifica-
tion, or annual probability of postfire debris flow. These
maps can be used to prioritize treatments such as fuel

plans that comply with the Federal Disaster Mitigation Act
(2000).

Limitations on applying the debris-flow likelihood
results

Fire behavior is highly variable, and we were unable to
accurately predict burn severity for individual basins in
most cases (Fig. 9). However, we were somewhat successful
at predicting the mean debris-flow likelihood even when
using a regional Py, value (Fig. 7). Our results of predicted
debris-flow likelihood represent a simplified scenario in
which burn severity is controlled by vegetation type only.
Using EVT to predict dNBR does help capture some variabil-
ity observed in fire behavior but is limited by our inability to
account for other factors that drive fire behavior. Simulated
dNBR and the corresponding Burned Area Reflectance
Classification (BARC) maps can be used to identify basins
with high debris-flow likelihood under a simplified wildfire
scenario that depends solely on EVT. Since fire behavior is
difficult to predict, this simplified scenario is best at identi-
fying areas that are naturally more prone to debris flows due
to hillslope gradient, soil characteristics (through Kf factor),
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Fig.10. Statewide prefire modeling results showing simulated differenced Normalized Burn Ratio (dNBR) (a), simulated Burned Area
Reflectance Classification (BARC); unburned/very low (U), low (L), moderate (M), and high (H) burn severity (b), debris-flow (DF) 15-min
rainfall intensity threshold (T) (c), debris-flow likelihood from 24 mm h™ storm (d), debris-flow volume (normalized to basin area); (e),
debris-flow combined hazard class; L: low, M: moderate, and H: high (f), annual probability that the 15-min triggering rainfall intensity
is exceeded for a debris-flow likelihood value of 50% (P(R > T); g), annual fire probability (P(F); h), and annual probability of a fire and
subsequent above-threshold rainfall intensity within the year following fire (P(F) x PR > T); i).
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and regional fire behavior (via calibrated prediction of
dNBR and regional BARC breaks) — all of which are known
prior to the fire.

Opportunities for future work

Improving our ability to forecast where landscapes are likely
to experience moderate and high burn severity would dra-
matically improve our ability to accurately predict debris-
flow likelihood. Once rainfall intensity is accounted for,
moderate and high burn severity in conjunction with slope
gradient are the most important factors influencing the
occurrence of debris flows (Staley et al. 2017). There are
likely opportunities to better predict burn severity and
debris-flow likelihood using machine learning and other
techniques. Although machine learning has been applied to
many fire-related investigations, there have been relatively
few attempts to use machine learning to predict fire severity
(Jain et al. 2020; Klimas et al. 2025). Fire behavior and effects
are fundamentally difficult to predict and the few existing
attempts to use machine learning have been limited in their
ability to accurately predict burn severity, especially for fires
on which the model was not trained (e.g. Birch et al. 2015;
Kane et al. 2015; Wells et al. 2023). Conditions immediately
prior to the fire such as daily fire weather (air temperature,
wind speed and direction, relative humidity, etc.) and fuel
moisture are critical drivers of fire behavior (e.g. van
Mantgem et al. 2013; Zald and Dunn 2018) and cannot be
known far in advance; these limitations hamper our ability to
incorporate critical factors into a postfire debris-flow likeli-
hood prediction prior to wildfire. However, other important
factors such as topography (elevation; aspect; landscape loca-
tion - hillslope, ridge, riparian), proximity to developed areas,
road density, fuel loads, rock type, and seasonal climatic
information can be considered prior to fire occurrence.
Indeed, some of these factors have been investigated with
machine learning. Zald and Dunn (2018) used a random forest
ensemble model and determined that daily fire weather was
the most important predictor variable followed by stand age,
ownership, and topographic position in an area impacted by
the 2013 Douglas Complex Fire in southern Oregon. Wells
et al. (2023) found that fuel loads and conditions (e.g. leaf-on
chlorophyll content), prefire weather, and topography were
important predictors of burn severity for two fires in north-
central Colorado. Klimas et al. (2025) used a machine learn-
ing model and found that vegetation productivity, elevation,
and canopy fuels were the most important predictor variables
in forested land in Utah. Further development of machine
learning approaches and other methods to estimate fire sever-
ity are promising to improve postfire debris-flow likelihood
predictions prior to wildfire.

Although our goal was to assess potential debris-flow
hazards for all of California, some caution should be applied
when using the debris-flow likelihood and volume models
(Table 1) in areas outside the original calibration area in

Southern California. For example, debris-flow sediment
sourcing (dry ravel, landslide, in-channel storage, hillslope
rilling), sediment characteristics (grain size, shape, volume
of available sediment, etc.), storm behavior (convective,
atmospheric river, etc.) vary in California. These differences
are currently not accounted for in the debris-flow likelihood
and volume models, even though they may produce differ-
ent debris-flow behavior and characteristics. An expanded
database of debris-flow triggering conditions and volume is
required to fully validate the models for all of California.
These data are currently being collected and we expect that
future versions of the debris-flow likelihood and volume
models will include these data in their development.

Additionally, we note that the goals and methods of this
study relate to the prediction of postfire debris-flow hazard
prior to a hypothetical future fire. As such, any predictions
produced as part of this study that lie within recently burned
areas reflect the debris-flow likelihood that may be induced
by the simulated burning of vegetation that may not represent
actual postfire conditions. To assess the current debris-flow
hazard in recently burned areas, we recommend consulting
the USGS hazard assessment produced using observed and
field-verified burn severity maps (http://landslides.usgs.gov/
hazards/postfire_debrisflow). Similarly, as the data products
used in our modeling approach are current as of August 2022,
changes in EVT and/or fire probability that have occurred
after that date (likely by recent fire) are not reflected in our
model output.

Additional limitations of this study are outlined below.
The climate products from NOAA Atlas14, though currently
the most comprehensive estimate of rainfall-intensity clima-
tology in the study area, quantify only the past climatology
in the area rather than future climate. As a result, they may
not capture changes in rainfall climatology that may result
from an ongoing climate change. Additionally, many of the
gage records used in the computation of the Atlas14 product
are less than 50 years in duration, meaning that the 50-year
15-min product is based on extrapolation rather than true
quantification of the 50-year recurrence interval storm.
Furthermore, the link between drought and short-duration
rainfall intensities important for runoff-generated debris-
flow occurrence is poorly understood and provides an oppor-
tunity for future climate modeling work that may improve
prefire predictions.

The FSim fire probability product also has several limita-
tions. Similar to Atlas14, the weather component of the fire
probability simulation is based on past climate records
rather than future climate predictions. The model is also
calibrated only on fires >100 ha in size, though the authors
acknowledge that the role of fires smaller than this thresh-
old on overall fire probability is likely negligible. Also, the
latest statewide release of FSim is valid from August 2022,
so the decreases in future fire probability present in areas
burned between August 2022 and the release of this study
are not captured in our products.
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Conclusion

We presented a consistent methodology to model postfire
debris-flow hazards in California prior to wildfire using simu-
lated differenced Normalized Burn Ratio (dANBR) data cali-
brated from 2020 to 2021 fire data, NOAA Atlas 14 rainfall
data, and fire probability data developed by Pyrologix. The
dNBR and other data were used to predict debris-flow likeli-
hood and volume for a 15-min rainfall intensity of 24 mm h~".
The largest source of uncertainty in predicting postfire
debris-flow likelihood and volume is due to the difficulty
in predicting dNBR, a proxy for soil burn severity, prior to
wildfire. Our approach tended to produce regionally consist-
ent simulated dANBR while actual fires will produce a wider
range in dNBR. Some areas will experience lower burn sever-
ity while other areas will experience higher burn severity.
Areas that burn at high soil burn severity will experience
higher debris-flow likelihood relative to debris-flow likeli-
hoods presented here. Because the debris-flow likelihood
and volume predictions are for a fixed rainfall intensity and
assume that a fire has occurred, we also calculated the annual
probability that a wildfire and the 15-min triggering rainfall
intensity for a debris-flow likelihood of 50% will occur using
NOAA Atlas14 rainfall recurrence data, the debris-flow likeli-
hood model, and the Pyrologix fire probability product. This
debris-flow product can be used to identify regions that are
most likely to experience postfire debris flows. Once these
regions are identified, our debris-flow likelihood and volume
products can be used to target specific basins that would
benefit from prefire mitigation efforts, such as improvements
to stream crossings. Ultimately, these products of postfire
debris-flow prediction prior to wildfire should aid prefire
efforts to mitigate debris-flow risks.
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